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SUMMARY 
A criterion is proposed for the advection of axisymmetric interfaces. The location of an interface is followed by a 
volume-tracking technique wherein a volume fraction parameter is assigned to each of the cells in a Eulerian grid 
system. The interface is discretized into a set of line segments fitted at the boundary of every pair of neighburing 
computational cells. The orientation of a line segment is obtained by inspecting the volume fractions of two 
neighbouring cells. The volume fractions are then advected using the velocity components at the boundary of the 
two cells. The following advection criterion is proposed: for advection in the axial direction the axial velocity I( is 
assumed constant in the vicinity of each cell face; for advection in the radial direction the radial velocity v times 
the radial distance r is assumed constant in the vicinity of each cell face, i.e. gv = const., where fi  = 0 for 
Cartesian and fi  = 1 for axisymmetric systems. The above criterion is used to develop an algorithm for the 
advection of axisymmetric interfaces which is referred to as the ‘axisymmetric flux line segment model for 
advection and interface reconstruction’ or A-FLAIR. 
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1. INTRODUCTION 

There are numerous physical phenomena and industrial processes in which two immiscible fluids or 
materials having different phases are in direct contact with each other. The numerical simulation of the 
complex topology of the interfaces between these fluids and different material phases has been one of 
the most challenging problems in computational fluid dynamics. Numerical modelling of these flows is 
complicated by the difficulty in describing the transient and irregular interface boundary conditions. 
Various techniques have been developed and their accuracy has been determined by the extent to which 
the physics of the interface is predicted. Reviews of different techniques for flows with interfaces have 
been provided by Hyman,’ Lasky et al.’ and Floryan and Rasm~ssen.~ 

One of the techniques for simulating the interfaces is based on tracking the volume of each of the 
fluid components in the system. Upon discretization of the fluids into fixed Eulerian grid cells, a 
parameter is defined which represents the fraction of a cell volume occupied by one of the fluids. For a 
particular cell, if this fraction is zero or unity, the cell is either empty or 1 1 1  of that fluid respectively. 
Therefore the cell does not contain an interface between this fluid and other fluids in the system. 
However, if the volume fraction is between zero and unity, then the cell is an interface cell and has to 
be treated in a special manner. Similarly, a volume fraction parameter can be defined for other fluids in 
the system. The difficulty in using the cell volume fraction parameter to track the interface lies in (i) 
accurately advecting this quantity across the cell boundaries and (ii) reconstructing the interface based 
on the new advected volume fractions. Different techniques have been developed to handle each of 
these problems. 
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One of the earliest works in this direction was by DeBar? In his paper DeBar described the 
fundamentals of the KRAKEN code, which is a Eulerian hydrodynamic code capable of locating fluid 
interfaces in the compressible inviscid flow of several fluids in a two-dimensional region. A sloped line 
segment was used to describe the interface. Advection of the interface was achieved by using local 
velocities to move the intersection points of the interface line with the cell boundaries. This resulted in 
a stretching of the interface and therefore violated conservation of mass at each advection. The latter 
problem was eliminated by specifying limitations on the allowable height of fluid in the cell. 

Noh and Woodward’ developed the simple line interface calculation (SLIC) algorithm in which the 
interface in each cell is assumed to be oriented either vertically or horizontally (i.e. parallel to the 
Eulerian co-ordinate axes). The interface line position in the cell is then easily obtained by simply 
knowing the fluid volume fraction. In addition, the assumption is made that the fluid resides on the side 
of the interface line where the neighbouring cells are mostly filled with the same fluid. The interface is 
then advected in the vertical and horizontal directions. Clearly, limiting the interface orientation to 
being either vertical or horizontal introduces the possibility of generating significant errors. 

Subsequently, C h ~ r i n ~ , ~  improved the SLIC method with regard to both interface shape and its 
advection by adding a comer interface to the horizontal and vertical lines. He also allowed advection 
of the interface in the diagonal directions. Hence, instead of just the four possible advection 
directions in SLIC, eight directions became possible. Huygen’s principle was then used to determine 
the direction of the interface advection. This technique was used by Ghoniem et al.8,9 and Sethian” 
to study flame propagation in premixed gases and by Colella et al.,” Henderson et al.,” and 
Puckett13 to study shock wave refraction. 

Hirt and Ni~hols , ’~  and Nichols et al.” introduced the volume-of-fluid (VOF) method, another 
improvement to the SLIC algorithm. They determined the direction of the interface by inspecting the 
volume fractions in the 3 x 3 block of neighbouring cells. However, for the advection they used the 
donor-acceptor flux approximation of Ramshaw and Trapp16 in conjunction with the vertical and 
horizontal interfaces originally assumed in SLIC. Several other donor-based methods have been 
developed, one of the more recent ones being the partial donor cell method (PDM) of Hain.17 PDM 
combines a second-order scheme with a donor cell method in such a way as to minimize diffusion and 
assure monotonicity. Barr and Ashurst18 combined VOF and Chorin’s version of SLIC to produce a 
method called SLIC-VOF. They showed that using this technique to advect curved interfaces results in 
a flattening or even an indentation of the interface. 

Youngs” modified the VOF method to calculate the interface slope in each cell. The slope of the 
interface in a cell and the location of the fluid were obtained by inspecting the volume fractions in the 
eight neighbouring cells. The position of the interface in the cell is adjusted to match the volume 
fraction of the fluid under consideration. However, the interface reconstructed by this technique is not 
continuous, since the intersection point of the interface with the cell face is different in two 
neighbouring cells. Marcus et al.” and Henderson et ~ 1 . ’ ~  used the least squares technique developed 
by Pucke$’ to study hyperbolic flows. In this technique the error between the volume fractions given 
by the true and approximate interfaces is minimized by the least squares line fit to a 3 x 3 cell unit. 
Ashgriz and P o o ~ ~  introduced the FLAIR technique, which is also based on a sloped line segment at 
the interface. FLAIR is different from other techniques in that the volume fraction is advected on the 
basis of the area beneath a portion of the interface line segment which lies near the boundary of two 
neighbouring cells. This technique has the advantage of generating a continuous interface at the cell 
boundaries. Ash@ and P o o ~ ~  showed that the FLAIR method is more accurate than the Hirt- 
Nichol~’~  VOF method. There are other techniques which also use VOF in determining the interface 
advection, but they mainly vary based on their treatment of the interface boundary conditions. For 
example, combined a non-orthogonal body-fitted grid for the momentum calculation with 
VOF for interface advection. 



ADVECTION OF AXISYMMETRIC INTERFACES 1339 

VOF-based techniques have been used extensively to simulate axisymmetic free surface flows. 
Torrey et al.” have described a VOF-based algorithm which can simulate axisymmetic and three- 
dimensional flows. Golafshani26 analysed axisymmetric transient creeping flows with free surfaces 
using the VOF method of Hirt and Ni~hols.’~ 

Up to this point the essential differences between advection of volume fractions in Cartesian and 
axisymmetric co-ordinates have not been addressed properly. In this paper we have introduced a 
criterion for the advection of the volume fractions in axisymmetic co-ordinates. In Section 2 the 
criterion for interface advection is developed using first principles and the differences between 2D 
Cartesian and axisymmetic advections are defined. In Section 3 the shortcomings of the previous 
methods for handling axisymmetic interfaces are discussed. In Sections 4 and 5 the equations for 
advecting the volume fraction in the axial and radial directions are developed using the FLAIR 
technique. Finally, the performance of the present approach is illustrated in Section 6 by sample 
calculations. 

2. ADVECTION CRITERION 

Consider the cross-sectional view of the axisymmetic two-fluid system shown in Figure 1, in which 
the shaded area represents the volume occupied by fluid 1 and the region outside the shaded area 
represents the volume occupied by fluid 2. These two areas will be referred to as the fluid and no-fluid 
regions respectively. Therefore one can define a volume fraction parameterj, for each cell ( i ,  j )  which 
can take values between unity and zero, i.e. j, = 0 represents an empty cell, j, = 1 a full cell and 
0 < j , j  < 1 an interface cell. A cell with 0 < 1 will be called a ‘wet cell’. The problem is to 
reconstruct the interface shape and to advect the interface by knowing thef-field and the velocity 
components in the z- and r-directions (u and v respectively). 

By examining the fractional volumes in each cell pair in the axial direction, one of the conditions 
shown in Figure 2 can be identified. Each cell can be empty, wet or full and therefore the two 
neighbouring cells can have nine different combinations. For instance, if we define the volume fraction 
in the cell on the left < 1 and 
j + ~ , ~  = 0, case 2-2 corresponds to j , j  = 0 and 0 < j + ~ , ~  < 1 and case Z-9 corresponds to 
0 < j, < 1 and 0 < j + I ,  < 1. The same can be said for the radial direction r when considering j, 
andj,j+l as shown in Figure 3. 

A criterion should be defined based on which the volume fractions can be advected spatially. Many 
of the previous advection techniques apply the continuity equation to each of the interior cells in the 

and that on the right a s j + ~ , ~ ,  case Z-1 corresponds to 0 
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Figure 1. Two-fluid volume fraction field in Eulerian grid space 
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2-1 2-2 2-3 

2-4 2-5 2 - 6  

2-7 2-8 2 - 9  
Figure 2. Possible cases of volume fractions for two neighbouring cells in the axial direction 

system (i.e. full cells). However, for the interface cells, owing to the difficulty in direct application of 
the continuity equation, special techniques had to be developed. The generalized advection criterion 
described here consistently satisfies the continuity equation for all the cells including the interface 
cells. In order to develop this criterion, we have to resort to the standard procedure for the 
discretization of the continuity equation. Therefore consider the continuity equation for an 
incompressible fluid applied to the volume of a single cell, 

where b = 0 for Cartesian and = 1 for axisymmetric co-ordinates. 

R-1 R-2 R - 3  

R-4 R-5 R - 6  

R-7 R-8 R - 9  

Figure 3. Possible cases of volume fractions for two neighbouring cells in the radial direction 
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In volume-tracking techniques the surface advection in each time step is carried out in each co- 
ordinate direction independently. For instance, in the axisymmetric case the volume hctions are first 
advected in the z-direction and then in the r-direction, and vice versa in the next time step. Therefore 
the integral in equation (1) resolves into two separate integrals (one in z and one in r). Since equation 
(1) includes partial derivatives for u and v, in order to be able to integrate this equation over one cell, 
some assumptions for the variation in u and v along the axes z and r are needed. The simplest 
assumptions that can be made are u being independent of r and r b  being independent of z in each cell. 
With these assumptions equation (1) can be written as 

The velocities on the cell faces are defined in terms of the staggered grid shown in Figure 4. 
Assuming constant velocities during the time increment at, equation (2) becomes 

where the subscripts T, By R and L refer to top, bottom, right and left limits of the integral for a cell 
respectively. These limits may vary depending on the location of the interface in the cell. For instance, 
forafullcellV;,j = 1) Q, = r j - l p ,  q =rj+lp, ZL = z i - l p a n d z ~  =zi+1p.InSections4and5the 
cell volume fractions along with the location of the interface within the cell will be used to determine 
the limits of integration for the interface cells. Since each of the integrals in equation (3) represents the 
fluid flux across one of the cell faces, the initial assumptions for the derivation of equation (2) are in 
fact the advection criterion. Explicitly, we propose the following criterion for the advection of the 
volume fractions. 

(i) for axial advection, u = const. in the vicinity of each cell face 
(ii) for radial advection, rpv = const. in the vicinity of each cell face. 

The advection criterion is directly extracted from equations (2) and (3) which include integrals of u 
and rh. Any other assumption for the variation in u and v with r and z in the vicinity of a cell face will 

L\' ' 
Figure 4. An axisymmetric cell with the cell velocities 
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make the algorithm much more complex. For instance, in order to evaluate the integrals in equation (3), 
one can assume v/r = const. Applying this assumption to the continuity equation will result in 
-u/2z = const. criterion. This assumption makes the algorithm more complex (since u is function of 
4. 

3. COMPARISON WITH PREVIOUS ADVECTION CRITERION 

The advection of the volume fraction field in almost all previous VOF-based methods has been based 
on the properties of a discontinuous interface. The interface is defined by a surface of discontinuity, 
F(x,t), which is assumed to be a Lagrangian invariant and therefore satisfies the relation 

DF  dF 
Dt dt 
_-  - - + (U.V)F = 0, (4) 

where U is the velocity vector. The surface h c t i o n  F(x,t) is then related to the volume fraction field 
j, j .  Equation (4) is subsequently divided into two partsI4 

j :  = f " - 6tV.(Uf ") ( 5 )  

f " + I  =j: + Gt(V*U)f", 

in whichf"+' is the new advected cell volume fraction determined from its previous valuef". Equation 
(6) basically provides a correction for the error in the momentum solver, since, for incompressible flow, 
V-U = 0 and hence f"+l becomes identical with j. Therefore equation ( 5 )  is used to define the 
advection of the volume fraction. This equation is later written in the form 

The bracketed quantities (f) are the fractional fluid volumes crossing each cell face; they were 
calculated based on the Hirt-Ni~hols'~ reconstruction algorithm. Equation (7) represents the mass 
conservation for each cell. The difficulty now resides in properly treating the volume fraction flux at 
the cell faces. 

In order to obtain a physical interpretation of equation (7), consider the term which contributes to 
the advection in the r-direction at the top cell face. Multiplying the numerator and denominator of the 
first term in the second pair of brackets by 2n6z yields 

2nri+ 1/2<;: 1/26t6z(f )T - - volume advected 
2nrj 6rSz total cell volume 

Comparing this with the third term in equation (3), the same expression 2nrj+ 1/2<;,! 1/28t can be seen 
in both equations. For full cells, which are located inside the domain, (f)T= 1 m equation (8). Also, 
ZL = zi- 112 and ZR = zi+ 1/2 in equation (7) and the integral from ZL to ZR equals the cell size 6z. 
Therefore the two equations give the same volume change for 111 cells. For interface cells the quantity 
2xrj+ 1/2vi, j +  can no longer be considered as the advected volume, because it may result in a 
volume change greater than the actual volume of fluid in the cell. In the previous VOF methods the 
term (f) was used to overcome this problem. The main difference between our approach to advect the 
interfaces and the previous techniques is in the description of (f). Previous methods assume 
v = const. in the vicinity of an interface cell and, by considering the orientation of the interface line 
segment, derive a relation for (f). This is not consistent with their volume advection at interior 
cells in cylindrical co-ordinates, which assumes rv = const. at the cell faces. The approach proposed 
here consistently uses the rv = const. criterion for both the interface and the interior cells. 
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As an example of the difference between axisymmetric advection using rv = const. and v = const. 
consider the interface shown in Figure 5. The interface is defined by a line AB which intersects the left 
face of cell (i ,  j )  at r A  = 1- 6 and the right face at r~ = 2.4. For simplicity it is assumed that u = 0 and 
~i,~+1/28t = 0.4. Therefore the volume of fluid in cell ( i ,  j )  is &,j = 2-626771, which results in 
5,j = 0.8756 for cell sizes of unity. The volume of fluid in cell ( i ,  j + 1) is &,j+l = 0.426711, 
resulting inJ,j+l = 0.08533. In previous VOF-based methods for axisymmetric co-ordinates, since 
vi, j +  lpdt = 0- 4 is used as the distance that the interface is advected, the volume flux that can be 
obtained is the volume of section AONCA, 

AVVOF = 271r,5,, - 2~1.3(0.6) = 1.066771, (9) 
which is the total volume of the fluid in cell (i, j )  minus the volume of fluid in section ACRLA. 
However, the present technique using equation (3) results in 

A V F L ~  = 271rj+ lpvi, j +  Ip8t - V A O ~  = 1.226771, (10) 

which is the exact volume flux advected during the time interval at. Therefore VOF-based methods 
result in 13% error for the case shown in Figure 5. In order to correct for this error, special techniques 
had to be developed. For instance, the surface is fiuther shifted to satisfl the conservation of mass for a 
domain of 3 x 3 cell units. By using w = const. as the advection criterion, no secondary correction 
model is needed. 

4. INTERFACE RECONSTRUCTION IN AxlAL DIRECTION 

The advection equations in axisymmetric systems are developed based on the FLAIR algorithm of 
Ashgriz and Poo.*~ While the method is applied only to the FLAIR technique, it is to be noted that the 
same procedure may be used to develop the flux equations for all other VOF-based interface advection 
models. 

In contrast with 2D Cartesian co-ordinates, movements along the z- and r-directions in axisymmetric 
co-ordinates do not obey the same relations. Also in each co-ordinate system, different relations must 
be used depending on the positive or negative direction of the movement. In axisymmetric co-ordinates 
the relationships for the interface advection are more complicated and contain a greater number of 

2 
‘ i - I l 2 . j  ‘ i+l /p. j  

Figure 5. Volume M o n  flux calculation for two neighbouring radial cells 
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independent variables. Consequently, unlike the 2D Cartesian it is not possible to find closed 
form solutions in axisymmetric co-ordinates. Numerical solutions are required to determine the 
unknowns and distinction of the different cases must be accomplished on a trial-and-error basis. 

The first step for interface advection is to identifjl the surface orientation from thef-field. In the 
FLAIR method this is accomplished by inspecting the volume fractions in two neighbowing cells as 
shown in Figure 2. Consider first advection in the z-direction. The most general case occurs when two 
neighbouring cells are both wet-shown in case Z-9 of Figure 2. All other cases for advection in the z- 
direction can be reduced to this case. Therefore case Z-9 is discussed first. Four possible conditions for 
case Z-9 are obvious by inspection. They are shown in Figure 6 as subcases Z-9-a-Z-9-d. The method 
for determining the interface line for subcase Z-9-a is discussed below and the results for the other 
subcases are treated in Appendix I. Assume that the cross-section of the interface in the r-z plane can 
be approximated by a line segment fitted through the boundary of two neighbouring cells such that 

q = aj5 + bj, ( 1 1 )  
where the orthogonal co-ordinates (q, 5 )  are attached to the lower left corner of cell (i, j )  as shown in 
Figure 7. The constants uj and b, are to be determined from the known volume fractionsJi’, andJi’+l,j 
and the radius of the bottom cell face, rj - 12. The total volume of one cell is 

5‘ = n(r;’+ 1 /2  - $- 1/2)(zi+ 1 /2  - zi- 1 / 2 ) .  (12) 

Hereinafter, cell sizes in the r- and z-directions are assumed to be equal to unity (6r = 6z = 1 ) .  
Variable grid sizes can be considered in the same manner, but the equations cannot be simplified. For a 
grid which is uniform in both r- and z-directions, equation ( 1  2) reduces to 

<c = n(2rj- 1 /2  + 1 ) .  

K , j=$n( l ) [ ( r j -1 /2  + b j )  2 + ( r j - l / ~ + b j ) ( r j - 1 / 2  + u j + b j )  + ( r j - l / 2+u j+b j )2 -3r ; ’ -1 /* ] ,  

(13) 

It should be emphasized that 7 varies with rj- 1p. The wetted volumes in the two cells are 

Vi+ l , j= ln ( l ) [ ( r j -1 /2  + u j + b j ) 2  
+ ( r j - 1 / ~ + ~ j + b j ) ( r j - 1 / 2 + 2 u j + b j ) + ( r j - 1 / 2 + 2 u j + b j ) ~ - 3 ~ _ 1 / 2 ] .  

2-9 -a  2 -9 -b  

2-9-c  Z-9-d  
Figure 6. Four possible cases of interface orientation for case Z-9 
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(b) 
Figure 7. Volume fraction flux calculation for two neighburing cells in (a) positive and (b) negative axial directions 
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which constitute a set of coupled non-linear equations in the two unknowns aj and bj. In each time step 
these equations are solved numerically using the Newton-Raphson method. 

Once the surface has been reconstructed, the fluid flux moving from one cell to the neighbouring cell 
can be calculated by integrating the volume in the shell whch is contained between the bottom of the 
cells and the interface line. The length of this shell is ez = Iui+ 112, j6tl, which is the distance that the 
fluid is advected in the z-direction during the time interval 6t. By using equation (3) for the z-direction, 
it follows that 

where z* is defined as z* = zi+ 112 - .sZ. Figures 7(a) and 7(b) show the effective areas for positive and 
negative z-fluxes respectively. Knowing aj, bj, and rj- 112, the fluid fluxes for positive and negative 
movements may be shown to be 

(20) 
2 

x (rj- 1/2 + aj + bj) + (rj- 1/2 + aj + bj) - 3.1'- 1/21. 

Since closed form solutions do not exist for aj and bj, the case at hand cannot be recognized in 
advance from the values of J,j,J+l,j, and rj-1/2. For every set O f J , j , J + l , j ,  and rj-l/z, the 
computations are started with subcase Z-9-a. After a, and bj have been found, the size limits shown in 
Figure 6 are checked for that subcase. For instance, the size limits for subcase Z-9-a are 0 < ~ ( 0 )  < 1 
and 0 < q(2) < 1. If the size limits are satisfied, then subcase Z-9-a is the correct one, otherwise 
different cases must be tried in the same way. It is possible that the 'heavy' side of the two neighbouring 
cells (the side where more fluid is located) is other than the one shown in subcase Z-9-a. In such cases 
the volume fractionsJ,, andJ+l,, are redefined such that one of the surfaces shown in Figure 6 is 
recovered. 

In cases 2-3-2-6 of Figure 2 the cells are either full or empty and therefore the surface orientation is 
known. For other cases, e.g. Z-1, the line segment must be found within the cell rather than at the cell 
boundary. Figure 8 shows all possible cases for a single wet cell. Cases I-a-I-d are independent and are 
investigated in detail in Appendix I and the other cases can be reduced to them by co-ordinate 
transformation. The slope of the line segment in these cases is determined by taking the average of the 
slopes found at the cell boundaries between the wet cell under consideration and its neighbouring wet 
cells. Then, knowing the volume fractionJ,,, the average slope and the radius of the bottom cell face, 
rj- ]/2, the criterion developed in Appendix I is used to identify the type of wet cell. The derivation of 
the volume fraction fluxes for these cases is also presented in Appendix I. 

5.  INTERFACE RECONSTRUCTION IN RADIAL DIRECTION 

The procedure for distinguishing the cases in the radial direction is similar to that in the axial direction. 
All possible cases for two neighbouring cells are shown in Figure 3. Similarly to the axial advection 
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I-a 

ll-a 

Ill-a 

IV-a c 

I-b 

I 

Il-b 

Ill-b 

IV-b 

I-C 

I 

Il-c 

Ill-c 

I 

IV-c 

I-d 

Il-d 

Ill-d 

IV-d 
Figure 8. Sixteen possible cases for the intextme orientation and heavy side of a single interface cell 

case, the most general case is R-9, which has four subcases as shown in Figure 9. If the heavy sides are 
other than the left faces of the cells, the volume hctions are redefined such that the subcases shown in 
Figure 9 are obtained. The interface orientation in cases R-3-R-6 is known in advance, since the cells 
are either full or empty. In the remaining cases the interface should be found in a single wet cell. In a 
circumstance such as case R-1 the slope of the interface is evaluated as an average of the interface 
slopes in the neighbouring cells. Knowing the volume fractionfi’,i and the slope 8, one of the cases 

R-9-a R-9-b R - 9 1  R-9-d 
Figure 9. Four possible cases for the interface orientation of two neighbouring cells in the radial direction for case R-9 
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shown in Figure 8 can be identified for the wet cell, as described previously for z-direction interface 
reconstruction. 

For advection in the axial direction the wetted volumes of each cell, c,,, are reduced to the 
fractional volumesJ,j by dividing them by the total volume of the cell, 7 (see equations (14) and 
(15)). Since the cell volume stays constant during axial advection at any rj- 1/2, the volume fraction 
flux SJ, could be used for the interface advection. However, for advection in the radial direction the 
total volumes of the neighbouring cells are different. Since thef-field is advected by taking a total 
volumeflux A V  from one cell to the neighbouring one, the volumefiactionflux Sf will be different in 
each neighbouring radial cell. In order to circumvent this problem, the wetted volumes and the volume 
flux, rather than the volume hction flux, are used in the advection of thef-field in the radial direction. 
Consider the downward advection of the fluid shown in Figure 10. From the continuity equation (3) the 
volume flux crossing the bottom cell face in the radial direction is given by 

where E, = lvi, j -  1128tl. Defining q = 9(<) to be the vertical distance between the interface and the 5- 
axis, the differential volume of fluid enclosed in the interval d t  is 

dV, = n(q2 + 2rj- 1 1 2 ~ )  d t  (22) 
and the differential volume defined by equation (21) is 

dVer = 2mrrj- 112 d<. 

In evaluating the integral of equation (21), the volumes defined by equations (22) and (23) must be 
compared. The value of qe for which the two volumes are equal is 

and therefore 5, = 9-' ( q e )  in the limit dV, = dV,,. The behaviour of the integral in equation (21) is 
different on either side of this limit. Let the volume of fluid enclosed in the interval from 5 = 0 to 5 be 
defined as V(l). Then 

q e  = d({- 112 + 2rj- 1/2~r) - rj- 112 (24) 

dVEr = 2nrj- 1/2~rte if 0 < 5 < t e ,  

dV, = V(5 = 1) - V(t = le)  if te > t 2 1 

z ' i + j / 2  
z 

i - l / Z  

Figure 10. Volume flux calculation in the radial direction 
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and the total volume flux becomes 

A V  = 2 ~ 9 - 1 / 2 ~ ~ 5 ,  + V ( <  = 1 )  - V ( 5  = 5,) .  (25 1 
Equation (25) is the general result for the advection of the volumes in the radial direction. For each 

case and its subcases the values of S(t), 5, and V ( t )  are first determined and then the volume flux is 
calculated from equation (25). For instance, for downward advection in case I-a (see Figure 10) 
S(5), 5, and V ( 5 )  become 

5, = 1 - e(q,  + 10 - l ) ,  

n(5 + 1 - 1 )  
(2rj- 112 + 1)(1 - l)n + [ (rj- 1/2 + 112 + (9- 1/2 + 1 )  

V ( 5 )  = I 
where 8 = tan 8 and 1 and 8 are defined in Figure 8. This figure also shows that there are 16 different 
cases for a single wet cell. Cases I-a-I-d are the basic cases for downward advection and cases III-a- 
III-d may be reduced to these cases through simple transformation. Similarly, cases II-a-II-d are the 
basic cases for upward advection and cases IV-a-IV-d reduce to these by transformation. The same 
results are also utilized in flux calculations for cell pairs in the r-direction. The advection equations for 
the basic cases in the radial direction are given in Appendix 11. 

6. SAMPLE CALCULATIONS 

The technique described in the previous sections, which is referred to as A-FLAIR (axisymmetric flux 
line segment model for advection and interface reconstruction), is implemented in several test 
problems for which advections of a circle located at various points in an axisymmetric Eulerian co- 
ordinate system are required. The initial circles, located at different positions, are moved with positive 
and/or negative velocities which satisfy the axisymmetric continuity equation. The radius of the initial 
circle is 25 in all cases. 

Figure 1 1  shows the displacement of a circle in the radial direction when the axial velocities are set 
equal to zero. With this assignment for u, continuity requires that rv = c, where c is a constant. The 
exact motion of each point of a circle initially located at radius r, from the z-axis with the constraint 
rv = c can be obtained by 

r -  = J(6 + 2 4 ,  

where rf is the radial position of the point at time t .  In Figure 1 1  the exact results given by the above 
equation for c = 0.8 and t = 1060 are compared with the results obtained by A-FLAIR. Excellent 
agreement is attained. Also shown in Figure 1 1  is the final shape of the circle produced by direct 
application of the FLAIR technique23 to the axisymmetric geometry. ~n this case the velocities for the 
interface advection were obtained using rv = 0.8. The deviation from the analytical result is clearly 
seen, indicating that this approach does not satisfy the continuity equation applied to the interface cells. 
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Figure 1 1 .  Advection of a circle in the positive radial direction 

In order to reach the same final time used for evaluating the analytical result (t = 1060), a larger 
number of time steps (104 steps) had to be used for FLAIR advection than for A-FLAIR advection 
(100 steps). Since the error is larger at smaller radii, as shown in Section 3, the advection of the lower 
part of the circle is always predicted with less accuracy. Hence care must be exercised in interpreting 
the nature of the errors when looking at a figure such as Figure 11. 

The initial circle shown in Figure 12(a) was allowed to perform a combined axial and radial 
displacement while having u = 0.4 and rv = 0.8. The final shape after 100 time steps of St = 1 
contained no deformation due to movement in the z-direction. However, in the r-direction the points at 
smaller r, having larger v, moved faster than the points at larger r. In Figure 12@) a circle was moved in 
the negative z- and r-directions while having u = -0.4, rv = -10.0 and St = 1 for each time 
increment. The points at smaller radii attained velocities which were relatively large compared with the 
velocities of the points located at larger radii. 

A more stringent case was also considered by moving the test circle in a highly strained field of a 
single pinned vortex ring. The equations for the axial and radial velocities for the vortex ring are given 
b f 7  

1 rR 2(Z-r) ( 5(;-1)) r [ ( y )  5 
4a2 +- log - + 1 - -(2 + 3 - 2Zr +Z2) , u=-- 1 +- (27) 4ar a2 4ar 
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Figure 12. Advection of a circle in combined radial and axial directions: (a) positive and (b) negative velocities 

where r, R, a and 1 are the total circulation about the core, the radius of the centroid, the core radius 
and the radial distance of the co-ordinate attached to the ring from the axis of symmetq?' respectively. 
For the sample case we chose r = -0-4,R = 140,a = 4 and 1 = 140. Figure 13 shows the velocity 
field for the region under consideration along with the initial circle and four successive snapshots of 
evolved shapes. The accuracy of the advection technique is tested against the exact displacement of 
different points by numerically integrating equations (27) and (28). The results of the exact solution are 
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Figure 13. Advection of a circle in a flow field generated by 
a pinned single vortex ring. The corresponding times are 0, 

Figure 14. Comparison of the A-FLAIR results with the exact 
solution. Dotted lines represent the particle path 

98.12,193437,279.71 and 443.58 

compared with the results of A-FLAIR in Figure 14, which shows excellent agreement. The volume 
change was also calculated for these cases and the average change in volume during each time step was 
found to be which can be redistributed in the two cells. 
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APPENDIX I: VOLUME FLUX ADVECTION IN THE AXIAL DIRECTION 

Subcase Z-9-b 

common face of the two cells as shown in Figure 15(a). Then 
Let lb be the distance from the intersection point of the interface line with the cell bottom to the 

Using the same procedure as in subcase Z-9-a, it follows that 
2 2 

cP(aj, bj) = (rj- 1/2 + bj) + (rj- 1/2 + bj)(rj- 1/2 + aj + bj) + (rj- 1/2 + aj + bj) 

- [3{-1/2 3J,j(2rj-1/2 + I)] = 0, 
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Figure 15. Interface 
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orientation for (a) subcase Z-9-b, (b) subcase Z-9-c subcase Z-9-d 
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Subcase Z-9-c 

Similarly, defining 1, as shown in Figure 15(b), it follows that 
bj - 1 

1, = 1 +-, 

Subcase Z-9-d 

For this subcase lb and 1, are defined in Figure 15(c) as 



ADVECTION OF AXISYh4METRIC INTERFACES 1355 

Subcuse I-u 

When considering single wet cells, 16 different cases are possible as shown in Figure 8.  The 
advection for all these cases in the axial direction can be reduced to the first four cases, namely cases 
I-a-I-d. For subcase I-a, evaluating the volume fraction$,, based on rj - 1/2,8 and 1 (as shown in Figure 
8) and rearranging results in 

13-38(q_1/2+1)12+382(2rj-1/2+1)(l - $ , j )  = o ,  
where 8 = tan 8; 1 can be found from the above equation. The fluid flux may then be calculated in the 
same manner as for the cell pair cases. This leads to 

3(2rj-  1/2 + 1) 

Subcuse I-b 

This subcase refers to a single wet cell with .n/4 < 8 < .n/2 as shown in Figure 8. The equation for 
1 is 

2 1  1 
(rj - 1 / 2  + 1) + - (q - 1/2 + 1) + - - 1;2- 1 /2 -5,j (2rj - 1/2 + 1 = o 

8 382 
and the volume fraction flux is given by 

Subcuse I-c 

As shown in Figure 8 , l  for this subcase is defined as the distance fiom the intersection point of the 
interface with the bottom cell face to the right cell face. It is given by 
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and the volume fraction flux for this case becomes 

Subcase I-d 

In this subcase a cubic equation results for 1, i.e. 

l3 + 3rj- 112e12 - 3 ~ , # ( 2 r ~ -  + 1) = 0, 

and the volume fraction flux becomes 

Once 1 has been found, the case is identified through a trial-and-error scheme by applying the size 
limits shown in Figure 8. 

APPENDIX 11: VOLUME FLUX ADWCTION IN THE RADIAL DIRECTION 

I .  I .  Interface reconstruction in the radial direction 

In this appendix the equations for the interface orientation are provided followed by the equations 
for the volume flux from one cell to its neighbour. Note that the general forms of the interface 
orientation for two neighbouring radial cells are shown in Figure 3. However, they can either be readily 
identified or be reduced to the case R-9. This case has four possible subcases which are shown in 
Figure 9 and will be discussed here. 

Subcase R-9-a 

Denote the cross-section of the interface in a cell pair on the r-z plane by the line 

5 = aiq + bi. 

For subcase R-9-a shown in Figure 16(a) the volume fractionsJ, j andJ,j+l are calculated from ai, bi 
and rj-]12 as 



ADVECTION OF AXISYMMETRIC INTERFACES 1357 

‘ t  “4 

‘,+1/2 ‘ j + 3 / [ - - - E E _  -- - 

‘,.1/2 --- 

‘ t  “ k  ‘ t  “ k  

Figure 16. Interface orientation for (a) subcase R-9-a, @) subcase R-9-b, (c) subcase R-9s and (d) subcase R-9d 

Solving these equations for ai and bi gives 

Subcase R-9-b 

Consider Figure 16@) and define 
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Then, by evaluating A, and rearranging, 
b.  -f: . - 9a. 

1 - b1 

and 

Substituting for bi in the above results in a cubic equation for ai, i.e. 
3 2 c0ai + ciai + c2ai + c3 = 0,  

where 
3 2 

Co = (1 - 9) - 3(rj-l/2 -k 1)(1 - 9) , 

Subcase R-9-c 

Similarly in Figure 16(c), 

Subcase R-9-d 

For this subcase, two coupled non-linear equations are solved numerically by the Newton-Raphson 
method. The parameters are defined in Figure 16(d): 

2 rp(ai, bi) = (ui + bi)3 - 3(rj- 1/2 + 1) (q  + bi) ai - 3(2rj- 1/2 + 3)f;,j - bia? = 0,  
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As for the axial direction, closed form solutions for ai and bi do not exist and the case needs to be 
distinguished by trial and error. 

II. 2. Interface advection in the radial direction 

The interface advection in the radial direction as described in Section 5 requires determination of the 
interface line q = Y( 5 )  , 5, and the volume function V (  t ) . Once these functions are known, the volume 
flux can be calculated from equation (25). Therefore in the following the governing equations for 
calculating the volume flux for the basic cases are given. Cases I-a-I-d are for downward advection; 
cases 11-a-11-d are for upward advection. 

Subcase I-b 

In this subcase the interface is reconstructed by a line segment connecting the left cell face to the 
right cell face in a single wet cell as shown in Figure 8. The equations for q ,  5, and V ( < )  are 

1 - 5  q = l + -  
e l  

where 8 = tan 8. 

Subcase I-c 

Subcase I-d 
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Subcase ZI-a 

For the upward movement of a wet cell, equating the differential volumes results in 

q e  = r j +  1/2 - J(f+ 1/2 - 2 r j +  1 / 2 ~ ) .  

The following relations are derived for subcases 11-a-11-d shown in Figure 8. Subcases IV-a-IV-d can 
be reduced to these. For subcase 11-a, 

q =  1 - -  +- 521-1, ( A) lit, 

Subcase 11-c 
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Subcase 11-d 
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